CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Mapping condition-dependent regulation of metabolism in yeast through genome-scale modeling

Tobias Österlund (Institutionen för kemi- och bioteknik, Systembiologi) ; Intawat Nookaew (Institutionen för kemi- och bioteknik, Systembiologi) ; Sergio Bordel Velasco (Institutionen för kemi- och bioteknik, Systembiologi) ; Jens B. Nielsen (Institutionen för kemi- och bioteknik, Systembiologi)
BMC Systems Biology (1752-0509). Vol. 7 (2013),
[Artikel, refereegranskad vetenskaplig]

Background:

The genome-scale metabolic model of Saccharomyces cerevisiae, first presented in 2003, was the first genome-scale network reconstruction for a eukaryotic organism. Since then continuous efforts have been made in order to improve and expand the yeast metabolic network.

Results:

Here we present iTO977, a comprehensive genome-scale metabolic model that contains more reactions, metabolites and genes than previous models. The model was constructed based on two earlier reconstructions, namely iIN800 and the consensus network, and then improved and expanded using gap-filling methods and by introducing new reactions and pathways based on studies of the literature and databases. The model was shown to perform well both for growth simulations in different media and gene essentiality analysis for single and double knock-outs. Further, the model was used as a scaffold for integrating transcriptomics, and flux data from four different conditions in order to identify transcriptionally controlled reactions, i.e. reactions that change both in flux and transcription between the compared conditions.

Conclusion:

We present a new yeast model that represents a comprehensive up-to-date collection of knowledge on yeast metabolism. The model was used for simulating the yeast metabolism under four different growth conditions and experimental data from these four conditions was integrated to the model. The model together with experimental data is a useful tool to identify condition-dependent changes of metabolism between different environmental conditions.

Nyckelord: Saccharomyces cerevisiae, Genome-scale metabolic model, Integrated analysis, Transcriptionally controlled reactions



Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2013-05-08. Senast ändrad 2015-11-24.
CPL Pubid: 176679

 

Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för kemi- och bioteknik, Systembiologi (2008-2014)

Ämnesområden

Informations- och kommunikationsteknik
Livsvetenskaper
Kemi

Chalmers infrastruktur

C3SE/SNIC (Chalmers Centre for Computational Science and Engineering)

Relaterade publikationer

Denna publikation ingår i:


Reconstruction of Biological Networks for Integrative Analysis


 


Projekt

Denna publikation är ett resultat av följande projekt:


Industrial Systems Biology of Yeast and A. oryzae (INSYSBIO) (EC/FP7/247013)