CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Riemannian Manifold-Based Support Vector Machine for Human Activity Classification in Images

Yixiao Yun (Institutionen för signaler och system, Signalbehandling) ; Irene Y.H. Gu (Institutionen för signaler och system, Signalbehandling) ; Hamid Aghajan
IEEE International Conference on Image Processing (ICIP 2013), Sept.15 - 18, Melbourne, Australia p. 3466-3469. (2013)
[Konferensbidrag, refereegranskat]

This paper addresses the issue of classification of human activities in still images. We propose a novel method where part-based features focusing on human and object interaction are utilized for activity representation, and classification is designed on manifolds by exploiting underlying Riemannian geometry. The main contributions of the paper include: (a) represent human activity by appearance features from image patches containing hands, and by structural features formed from the distances between the torso and patch centers; (b) formulate SVM kernel function based on the geodesics on Riemannian manifolds under the log-Euclidean metric; (c) apply multi-class SVM classifier on the manifold under the one-against-all strategy. Experiments were conducted on a dataset containing 2750 images in 7 classes of activities from 10 subjects. Results have shown good performance (average classification rate of 95.83%, false positive 0.71%, false negative 4.24%). Comparisons with three other related classifiers provide further support to the proposed method.

Nyckelord: Human activity classification, Riemannian manifold, covariance descriptor, symmetric positive definite matrices, support vector machines.

Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2013-05-08. Senast ändrad 2014-07-24.
CPL Pubid: 176676


Läs direkt!

Lokal fulltext (fritt tillgänglig)

Institutioner (Chalmers)

Institutionen för signaler och system, Signalbehandling (1900-2017)


Informations- och kommunikationsteknik

Chalmers infrastruktur

Relaterade publikationer

Denna publikation ingår i:

Riemannian Manifold-Based Modeling and Classification Methods for Video Activities with Applications to Assisted Living and Smart Home