CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Thermal Variation of Structure and Electrical Conductivity in Bi4YbO7.5

M. Leszczynska ; X. Liu ; W. Wrobel ; M. Malys ; M. Krynski ; Stefan T. Norberg (Institutionen för kemi- och bioteknik, Oorganisk miljökemi) ; S. Hull ; F. Krok ; I. Abrahams
Chemistry of Materials (0897-4756). Vol. 25 (2013), 3, p. 326-336.
[Artikel, refereegranskad vetenskaplig]

The thermal behavior of the oxide ion-conducting solid electrolyte Bi4YbO7.5 was investigated using a combination of variable temperature X-ray and neutron powder diffraction, thermal analysis (DTA and TGA), and ac impedance spectroscopy. The title compound shows a fluorite-type structure throughout the measured temperature range (20-850 degrees C), with a phase separation at ca. 600 degrees C into a cubic delta-type phase and an orthorhombic phase of assumed stoichiometry Bi17Yb7O36. This type of transition is a relatively common feature in bismuth oxide-based systems and can limit their practical application. Here, the transition was carefully studied using isothermal measurements, which showed that it is accompanied by changes in oxide-ion stoichiometry, as well as significant disorder in the oxide ion sublattice in the delta-type phase. These results correlate with the observed electrical behavior. Analysis of the total neutron scattering through reverse Monte Carlo (RMC) modeling reveals details of the coordination environments for both cations. The oxide-ion vacancy distribution seems to be consistent with a favoring of < 100 > vacancy pairs, although < 110 > vacancy pairs exhibit the highest frequency as they have the maximum likelihood. A vacancy ordering model based on three vacancies per cell is presented.

Nyckelord: bismuth oxide, bismuth ytterbium oxide, fluorite structure, defect structure, neutron diffraction, total, cubic bismuth oxides, defect structure, ionic-conductivity, solid, electrolytes, total scattering, fuel-cells, phase, system, delta-bi2o3, diffraction

Denna post skapades 2013-05-02.
CPL Pubid: 176416


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för kemi- och bioteknik, Oorganisk miljökemi (2005-2014)



Chalmers infrastruktur