CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Exclusion sensitivity of Boolean functions

Erik Broman (Institutionen för matematiska vetenskaper, matematisk statistik) ; C. Garban ; Jeffrey Steif (Institutionen för matematiska vetenskaper, matematik)
Probability theory and related fields (0178-8051). Vol. 155 (2013), 3-4, p. 621-663.
[Artikel, refereegranskad vetenskaplig]

Recently the study of noise sensitivity and noise stability of Boolean functions has received considerable attention. The purpose of this paper is to extend these notions in a natural way to a different class of perturbations, namely those arising from running the symmetric exclusion process for a short amount of time. In this study, the case of monotone Boolean functions will turn out to be of particular interest. We show that for this class of functions, ordinary noise sensitivity and noise sensitivity with respect to the complete graph exclusion process are equivalent. We also show this equivalence with respect to stability. After obtaining these fairly general results, we study “exclusion sensitivity” of critical percolation in more detail with respect to medium-range dynamics. The exclusion dynamics, due to its conservative nature, is in some sense more physical than the classical i.i.d. dynamics. Interestingly, we will see that in order to obtain a precise understanding of the exclusion sensitivity of percolation, we will need to describe how typical spectral sets of percolation diffuse under the underlying exclusion process.

Nyckelord: Noise sensitivity, Exclusion sensitivity, noise sensitivity, critical percolation

Denna post skapades 2013-04-26. Senast ändrad 2016-07-15.
CPL Pubid: 176191


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, matematisk statistik (2005-2016)
Institutionen för matematiska vetenskaper, matematik (2005-2016)



Chalmers infrastruktur