CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

DECAY OF A p-HARMONIC MEASURE IN THE PLANE

N. L. P. Lundstrom ; Jonatan Vasilis (Institutionen för matematiska vetenskaper, matematik)
Annales Academiae Scientiarum Fennicae-Mathematica (1239-629X). Vol. 38 (2013), 1, p. 351-366.
[Artikel, refereegranskad vetenskaplig]

We study the asymptotic behaviour of a p-harmonic measure w(p), p is an element of (1, infinity], in a domain Omega subset of R-2, subject to certain regularity constraints. Our main result is that w(p) (B (w, delta) boolean AND partial derivative Omega, w(0)) approximate to delta(q) as delta -> 0(+), where q = q(v,p) is given explicitly as a function of v and p. Here, v is related to properties of Omega near w. If p = infinity, this extends to some domains in R-n. By a result due to Hirata, our result implies that the p-Green function for p is an element of (1, 2) is not quasi-symmetric in plane C-1,C-1-domains.

Nyckelord: Harmonic measure, harmonic function, p-Laplace operator, generalized interior ball



Denna post skapades 2013-04-22.
CPL Pubid: 175899

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, matematik (2005-2016)

Ämnesområden

Matematik

Chalmers infrastruktur