CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Multi-Class Ada-Boost Classification of Object Poses through Visual and Infrared Image Information Fusion

Mohamed Hashim Changrampadi (Institutionen för signaler och system, Signalbehandling) ; Yixiao Yun (Institutionen för signaler och system, Signalbehandling) ; Irene Y.H. Gu (Institutionen för signaler och system, Signalbehandling)
Proceedings - International Conference on Pattern Recognition, 21st ICPR 2012, Tsukuba,Japan, 11-15 November 2012 (1051-4651). p. 2865-2868. (2012)
[Konferensbidrag, refereegranskat]

This paper presents a novel method for pose classification using fusion of visual and thermal infrared(IR) images. We propose a novel tree structure multi-class classification scheme with visual and IR sub-classifiers. These sub-classifiers are different from the conventional one-against-all or one-against-one strategies, where we handle the multi-class problem directly. We propose to use an accuracy score for the fusion of visual and IR subclassifiers. In addition, we propose to use the original Haar features plus an extra one, and a multi-threshold weak learner to obtain weak hypothesis. The experimental results on a visual and IR image dataset containing 3018 face images in three poses show that the proposed classifier achieves high classification rate of 99.50% on the test set. Comparisons are made to a fused one-vs-all method, a classifier with visual band only, and a classifier with IR band only. Results provide further support to the proposed method.

Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2013-04-11. Senast ändrad 2014-07-24.
CPL Pubid: 175619


Läs direkt!

Lokal fulltext (fritt tillgänglig)

Institutioner (Chalmers)

Institutionen för signaler och system, Signalbehandling (1900-2017)


Informations- och kommunikationsteknik
Data- och informationsvetenskap

Chalmers infrastruktur

Relaterade publikationer

Denna publikation ingår i:

Visual Object Tracking and Classification Using Multiple Sensor Measurements