CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Self-Assembled Nanoscale DNA-Porphyrin Complex for Artificial Light Harvesting

Jakob Woller (Institutionen för kemi- och bioteknik, Fysikalisk kemi) ; Jonas K. Hannestad (Institutionen för kemi- och bioteknik, Fysikalisk kemi) ; Bo Albinsson (Institutionen för kemi- och bioteknik, Fysikalisk kemi)
Journal of the American Chemical Society (0002-7863). Vol. 135 (2013), 7, p. 2759-2768.
[Artikel, refereegranskad vetenskaplig]

Mimicking green plants' and bacteria's extraordinary ability to absorb a vast number of photons and harness their energy is a longstanding goal in artificial photosynthesis. Resonance energy transfer among donor dyes has been shown to play a crucial role on the overall transfer of energy in the natural systems. Here, we present artificial, self-assembled, light-harvesting complexes consisting of DNA scaffolds, intercalated YO-PRO-1 (YO) donor dyes and a porphyrin acceptor anchored to a lipid bilayer, conceptually mimicking the natural light-harvesting systems. A model system consisting of 39-mer duplex DNA in a linear wire configuration with the porphyrin attached in the middle of the wire is primarily investigated. Utilizing intercalated donor fluorophores to sensitize the excitation of the porphyrin acceptor, we obtain an effective absorption coefficient 12 times larger than for direct excitation of the porphyrin. On the basis of steady-state and time-resolved emission measurements and Markov chain simulations, we show that YO-to-YO resonance energy transfer substantially contributes to the overall flow of energy to the porphyrin. This increase is explained through energy migration along the wire allowing the excited state energy to transfer to positions closer to the porphyrin. The versatility of DNA as a structural material is demonstrated through the construction of a more complex, hexagonal, light-harvesting scaffold yielding further increase in the effective absorption coefficient. Our results show that, by using DNA as a scaffold, we are able to arrange chromophores on a nanometer scale and in this way facilitate the assembly of efficient light-harvesting systems.

Nyckelord: resonance energy-transfer, double-stranded dna, electron-transfer, systems, antenna, arrays, yoyo, nanotechnology, opportunities, membrane



Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2013-04-05. Senast ändrad 2013-04-05.
CPL Pubid: 175390

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för kemi- och bioteknik, Fysikalisk kemi (2005-2014)

Ämnesområden

Nanovetenskap och nanoteknik
Kemi

Chalmers infrastruktur

Relaterade publikationer

Denna publikation ingår i:


Functionalizing DNA Nanostructures. From Surface Assembly to Light Harvesting