CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Infrared spectroscopy of instantaneous decomposition products of LiPF6-based lithium battery electrolytes

Susanne Wilken (Institutionen för teknisk fysik, Kondenserade materiens fysik) ; Patrik Johansson (Institutionen för teknisk fysik, Kondenserade materiens fysik) ; Per Jacobsson (Institutionen för teknisk fysik, Kondenserade materiens fysik)
Solid State Ionics (0167-2738). Vol. 225 (2012), p. 608-610.
[Artikel, refereegranskad vetenskaplig]

Thermal gravimetric analysis and Fourier transform infrared spectroscopy is performed on the gaseous decomposition products evolved from two LiPF6/organic liquid-based battery electrolytes. During the heating of the electrolytes all gases are continuously transferred to the spectrometer in order to record instantaneous reaction products. We clearly detect PF5 and POF3 that are signatures of the PF6- anion self-dissociation and the decomposition reaction with trace amounts of water; as well as the neat organic solvents. Literature suggests a polymerization process of the carbonate solvents under the release of CO2 as the decomposition route in degradation studies on stored electrolytes. In contrast to that, we detect no CO2 over the whole temperature range and therefore suggest the initial decomposition route to simply consist of solvent evaporation and the thermally driven anion self-dissociation.

Nyckelord: LiPF6, Lithium-ion battery, TGA-FTIR, degradation-products, thermal-stability, li, lipf6, identification, reactivity, pf5

Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2013-03-28. Senast ändrad 2014-12-09.
CPL Pubid: 175162


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för teknisk fysik, Kondenserade materiens fysik (1900-2015)



Chalmers infrastruktur

Relaterade publikationer

Denna publikation ingår i:

Failure Mechanisms of Lithium-ion Battery Electrolytes: Detection and Mitigation