CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Computational fluid dynamics (CFD) prediction of bank effects including verification and validation

Lu Zou (Institutionen för sjöfart och marin teknik, Marine Design) ; Lars Larsson (Institutionen för sjöfart och marin teknik, Marine Design)
Journal of Marine Science and Technology (0948-4280). (2012)
[Artikel, refereegranskad vetenskaplig]

Restricted waters impose significant effects on ship navigation. In particular, with the presence of a side bank in the vicinity of the hull, the flow is greatly complicated. Additional hydrodynamic forces and moments act on the hull, thus changing the ship maneuverability. In this paper, Computational Fluid Dynamics methods are utilized for investigating the bank effects on a tanker hull. The tanker moves straight ahead at a low speed in two canals, characterized by surface piercing and sloping banks. For varying water depth and ship-to-bank distance, the sinkage and trim, as well as the viscous hydrodynamic forces on the hull, are predicted by a steady state Reynolds Averaged Navier-Stokes solver with the double model approximation to simulate the flat free surface. A potential flow method is also applied to evaluate the effect of waves and viscosity on the solutions. The focus is placed on verification and validation based on a grid convergence study and comparisons with experimental data. There is also an exploration of the modeling errors in the numerical method.

Nyckelord: Bank effects, Reynolds Averaged Navier-Stokes method, Hydrodynamic forces and moments, Sinkage and trim, Verification and Validation

Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2013-03-11. Senast ändrad 2015-05-08.
CPL Pubid: 174565


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för sjöfart och marin teknik, Marine Design (2012-2014)


Hållbar utveckling

Chalmers infrastruktur