CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Industrial Systems Biology of Saccharomyces cerevisiae Enables Novel Succinic Acid Cell Factory

José Manuel Otero Romero (Institutionen för kemi- och bioteknik, Systembiologi) ; D. Cimini ; K. R. Patil ; S. G. Poulsen ; Lisbeth Olsson (Institutionen för kemi- och bioteknik, Industriell Bioteknik ) ; Jens B. Nielsen (Institutionen för kemi- och bioteknik, Systembiologi)
PLoS ONE (1932-6203). Vol. 8 (2013), 1,
[Artikel, refereegranskad vetenskaplig]

Saccharomyces cerevisiae is the most well characterized eukaryote, the preferred microbial cell factory for the largest industrial biotechnology product (bioethanol), and a robust commerically compatible scaffold to be exploitted for diverse chemical production. Succinic acid is a highly sought after added-value chemical for which there is no native pre-disposition for production and accmulation in S. cerevisiae. The genome-scale metabolic network reconstruction of S. cerevisiae enabled in silico gene deletion predictions using an evolutionary programming method to couple biomass and succinate production. Glycine and serine, both essential amino acids required for biomass formation, are formed from both glycolytic and TCA cycle intermediates. Succinate formation results from the isocitrate lyase catalyzed conversion of isocitrate, and from the alpha-keto-glutarate dehydrogenase catalyzed conversion of alpha-keto-glutarate. Succinate is subsequently depleted by the succinate dehydrogenase complex. The metabolic engineering strategy identified included deletion of the primary succinate consuming reaction, Sdh3p, and interruption of glycolysis derived serine by deletion of 3-phosphoglycerate dehydrogenase, Ser3p/Ser33p. Pursuing these targets, a multi-gene deletion strain was constructed, and directed evolution with selection used to identify a succinate producing mutant. Physiological characterization coupled with integrated data analysis of transcriptome data in the metabolically engineered strain were used to identify 2nd-round metabolic engineering targets. The resulting strain represents a 30-fold improvement in succinate titer, and a 43-fold improvement in succinate yield on biomass, with only a 2.8-fold decrease in the specific growth rate compared to the reference strain. Intuitive genetic targets for either over-expression or interruption of succinate producing or consuming pathways, respectively, do not lead to increased succinate. Rather, we demonstrate how systems biology tools coupled with directed evolution and selection allows non-intuitive, rapid and substantial re-direction of carbon fluxes in S. cerevisiae, and hence show proof of concept that this is a potentially attractive cell factory for over-producing different platform chemicals.

Nyckelord: scale metabolic model, in-silico, reconstruction, strains, growth, yeast, biotechnology, validation, bioethanol, products



Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2013-03-04. Senast ändrad 2016-12-05.
CPL Pubid: 174339

 

Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för kemi- och bioteknik, Systembiologi (2008-2014)
Institutionen för kemi- och bioteknik, Industriell Bioteknik (2008-2014)

Ämnesområden

Energi
Livsvetenskaper
Hållbar utveckling
Kemi

Chalmers infrastruktur