CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Edge stabilization for Galerkin approximations of convection-diffusion problems

Erik Burman ; Peter Hansbo (Institutionen för tillämpad mekanik)
Computer Methods in Applied Mechanics and Engineering (0045-7825). Vol. 193 (2004), 15-16, p. 1437-1453.
[Artikel, refereegranskad vetenskaplig]

In this paper we recall a stabilization technique for finite element methods for convection-diffusion-reaction equations, originally proposed by Douglas and Dupont [Computing Methods in Applied Sciences, Springer-Verlag, Berlin, 1976]. The method uses least square stabilization of the gradient jumps across element boundaries. We prove that the method is stable in the hyperbolic limit and prove optimal a priori error estimates. We address the question of monotonicity of discrete solutions and present some numerical examples illustrating the theoretical results.

Nyckelord: stabilized methods, finite element, penalty



Denna post skapades 2006-08-28. Senast ändrad 2013-06-04.
CPL Pubid: 1742

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för tillämpad mekanik

Ämnesområden

Teknisk mekanik

Chalmers infrastruktur