CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Diffraction from Arrays of Plasmonic Nanoparticles with Short-Range Lateral Order

Markus Schwind (Institutionen för teknisk fysik, Kemisk fysik) ; Vladimir D. Miljkovic (Institutionen för teknisk fysik, Bionanofotonik) ; Michael Zäch (Institutionen för teknisk fysik, Kemisk fysik) ; Viktoria Gusak (Institutionen för teknisk fysik, Kemisk fysik) ; Mikael Käll (Institutionen för teknisk fysik, Bionanofotonik) ; Igor Zoric (Institutionen för teknisk fysik, Kemisk fysik) ; Peter Johansson (Institutionen för teknisk fysik, Bionanofotonik)
Acs Nano (1936-0851). Vol. 6 (2012), 11, p. 9455-9465.
[Artikel, refereegranskad vetenskaplig]

We have measured the angular distribution of light scattered off 2D plasmonic Al nanoparticle ensembles. We created.. these samples with disk-like nanoparticles, 175 and 500 nm in diameter, respectively, using hole-mask colloidal lithography and electron beam lithography. The nanoparticle arrangements In the samples display the Short-range order (but no long-range order) characteristic for an ensemble formed by random sequential adsorption. As a consequence of this, the ensemble scattering patterns can be quantitatively well described by combining the single-particle scattering pattern with a static structure factor that carries information about the diffraction effects caused by the short-range order of the ensemble. We also performed sensing experiments in which we monitored changes in the angle-resolved scattering intensity for a fixed wavelength as a function of the thickness of an ultrathin SiO2 coating covering the Al nanoparticles. The data show that the angle and strength of the main diffraction peak vary linearly, with SiO2 coating thickness In the range 1.5-4.5 nm and suggest that measurements of the scattering profile could be a competitive alternative to traditional transmission measurements in terms of sensitivity.

Nyckelord: localized surface plasmon resonance, scattering, diffraction, nanoplasmonic sensing, signal enhancement, aluminum, colloidal lithography, directional emission, light-scattering, phase-transition, spectroscopy, reflection, gold, sensitivity, resonances, nanodisks

Denna post skapades 2013-02-07. Senast ändrad 2017-10-03.
CPL Pubid: 173242


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för teknisk fysik, Kemisk fysik (1900-2015)
Institutionen för teknisk fysik, Bionanofotonik (2007-2015)



Chalmers infrastruktur

Relaterade publikationer

Denna publikation ingår i:

Nanoplasmonic Sensing for Materials Science