CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Supervisory Control of Extended Finite Automata Using Transition Projection

Mohammad Reza Shoaei (Institutionen för signaler och system, Automation) ; Lei Feng ; Bengt Lennartson (Institutionen för signaler och system, Automation)
51st IEEE Conference on Decision and Control, Maui, Hawaii (0191-2216). Article number 6427390, p. 7259-7266. (2012)
[Konferensbidrag, refereegranskat]

A limitation of the Ramadge and Wonham (RW) framework for the supervisory control theory is the explicit state representation using finite automata, often resulting in complex and unintelligible models. Extended finite automata (EFAs), i.e., deterministic finite automata extended with variables, provide compact state representation and then make the control logic transparent through logic expressions of the variables. A challenge with this new control framework is to exploit the rich control structure established in RW's framework. This paper studies the decentralized control structure with EFAs. To reduce the computational complexity, the controller is synthesized based on model abstraction of subsystems, which means that the global model of the entire system is unnecessary. Sufficient conditions are presented to guarantee that the decentralized supervisors result in maximally permissive and nonblocking control to the entire system.

Nyckelord: Automata, Computational complexity, Computational modeling, Observers, Supervisory control

Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2013-01-17. Senast ändrad 2014-09-02.
CPL Pubid: 171119


Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för signaler och system, Automation (2005-2017)


Datavetenskap (datalogi)

Chalmers infrastruktur

Relaterade publikationer

Denna publikation ingår i:

Incremental and Hierarchical Deadlock-Free Control of Discrete Event Systems with Variables: A Symbolic and Inductive Approach