CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Direct and inverse problems on nonlinear rods

Peter D. Folkow (Institutionen för mekanik och hållfasthetslära) ; Kevin Kreider
Mathematics and Computers in Simulation (0378-4754). Vol. 50 (1999), p. 577–595.
[Artikel, refereegranskad vetenskaplig]

In this paper a class of models on nonlinear rods, which includes spatial inhomogeneities, varying cross-sectional area and arbitrary memory functions, is considered. The wave splitting technique is applied to provide a formulation suitable for numerical computation of direct and inverse problems. Due to the nonlinearity of the material, there are no well defined characteristics other than the leading edge, so the method of characteristics, highly successful in the computation of linear wave splitting problems, is abandoned. A standard finite difference method is employed for the direct problem, and a shooting method is introduced for the inverse problem. The feasibility of the inverse algorithm is presented in various numerical examples.

Nyckelord: inverse problem; nonlinear; rod; finite difference; wave splitting; multivariant optimization



Denna post skapades 2013-01-11.
CPL Pubid: 170241

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för mekanik och hållfasthetslära (1972-2003)

Ämnesområden

Fastkroppsmekanik

Chalmers infrastruktur