CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Approximate Global Convergence and Adaptivity for Coefficient Inverse Problems

Larisa Beilina (Institutionen för matematiska vetenskaper, matematik) ; Michael V. Klibanov
New York : Springer Verlag, 2012. ISBN: 978-1-4419-7805-9.- 407 s.

Approximate Global Convergence and Adaptivity for Coefficient Inverse Problems is the first book in which two new concepts of numerical solutions of multidimensional Coefficient Inverse Problems (CIPs) for a hyperbolic Partial Differential Equation (PDE) are presented: Approximate Global Convergence and the Adaptive Finite Element Method (adaptivity for brevity). Two central questions for CIPs are addressed: How to obtain a good approximation for the exact solution without any knowledge of a small neighborhood of this solution, and how to refine it given the approximation. The book also combines analytical convergence results with recipes for various numerical implementations of developed algorithms. The developed technique is applied to two types of blind experimental data, which are collected both in a laboratory and in the field. The result for the blind backscattering experimental data collected in the field addresses a real-world problem of imaging of shallow explosives.

Introduces pioneering results of the authors’ own experiments on coefficient inverse problems Provides recipes for numerical implementations of developed algorithms Demonstrates performance of algorithms in both synthetic and experimental data.

Denna post skapades 2013-01-02. Senast ändrad 2016-07-14.
CPL Pubid: 168834


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, matematik (2005-2016)



Chalmers infrastruktur

C3SE/SNIC (Chalmers Centre for Computational Science and Engineering)