CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Weak convergence for a spatial approximation of the nonlinear stochastic heat equation

Adam Andersson (Institutionen för matematiska vetenskaper) ; Stig Larsson (Institutionen för matematiska vetenskaper, matematik)

We find the weak rate of convergence of approximate solutions of the nonlinear stochastic heat equation, when discretized in space by a standard finite element method. Both multiplicative and additive noise is considered under different assumptions. This extends an earlier result of Debussche in which time discretization is considered for the stochastic heat equation perturbed by white noise. It is known that this equation only has a solution in one space dimension. In order to get results for higher dimensions, colored noise is considered here, besides the white noise case where considerably weaker assumptions on the noise term is needed. Integration by parts in the Malliavin sense is used in the proof. The rate of weak convergence is, as expected, essentially twice the rate of strong convergence.

Nyckelord: non-linear heat equation, SPDE, finite element, error estimate, weak convergence, multiplicative noise, Malliavin calculus

Denna post skapades 2012-12-24. Senast ändrad 2014-09-02.
CPL Pubid: 168601


Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för matematiska vetenskaperInstitutionen för matematiska vetenskaper (GU)
Institutionen för matematiska vetenskaper, matematik (2005-2016)


Numerisk analys
Matematisk statistik

Chalmers infrastruktur

Relaterade publikationer

Denna publikation ingår i:

On weak convergence, Malliavin calculus and Kolmogorov equations in infinite dimensions