CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Sharp Asymptotics for Toeplitz Determinants and Convergence Towards the Gaussian Free Field on Riemann Surfaces

Robert Berman (Institutionen för matematiska vetenskaper, matematik)
International Mathematics Research Notices (1073-7928). 22, p. 5031-5062. (2012)
[Artikel, refereegranskad vetenskaplig]

We consider canonical determinantal random point processes with N particles on a compact Riemann surface X defined with respect to the constant curvature metric. We establish strong exponential concentration of measure type properties involving Dirichlet norms of linear statistics. This gives an optimal central limit theorem (CLT), saying that the fluctuations of the corresponding empirical measures converge, in the large N limit, towards the Laplacian of the Gaussian free field on X in the strongest possible sense. The CLT is also shown to be equivalent to a new sharp strong Szego-type theorem for Toeplitz determinants in this context. One of the ingredients in the proofs are new Bergman kernel asymptotics providing exponentially small error terms in a constant curvature setting.

Nyckelord: random matrices, positivity, bundles, kernel

Preprint available from: http://arxiv.org/abs/1106.4902

Denna post skapades 2012-12-19. Senast ändrad 2016-07-14.
CPL Pubid: 168225


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, matematik (2005-2016)



Chalmers infrastruktur