CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Characterization of CNT Enhanced Conductive Adhesives in Terms of Thermal Conductivity

Zhfei Zhang (Institutionen för mikroteknologi och nanovetenskap) ; Li-Lei Ye ; Akos Kukovecz ; Zoltan Konya ; Johan Bielecki (Institutionen för teknisk fysik, Kondenserade materiens fysik) ; Johan Liu (Institutionen för mikroteknologi och nanovetenskap, Bionanosystem)
ECS Transactions. CHINA SEMICONDUCTOR TECHNOLOGY INTERNATIONAL CONFERENCE 2012 (CSTIC 2012). (1938-5862). Vol. 44 (2012), 1, p. 1011-1017.
[Konferensbidrag, refereegranskat]

CNTs have excellent thermal, electrical and mechanical properties. They can be used in various ways. One researched field of application is CNT-polymer composites which combine common technologies with advanced materials. This paper will focus on the thermal property of CNT-Ag-filled adhesives and compares the new materials with conventional, electrical Ag-filled conductive adhesives. Several analytical methods, FTIR, Raman analysis, SEM and TEM have been carried out to examine the different surface conditions after physicval and chemical modification of CNTs. The thermal conductivities of composites containing different types of CNTs were investigated. The incorporation of CNTs into polymers resulted in enhancement of the thermal conductivity compared to Ag-filler. The increase of thermal conductivity with addition of CNT filler is obvious, especially for the purified CNT. The value of thermal conductivity is about two times higher than the Ag-filled conductive adhesive. However, improvement on thermal conductivity of the surface modified CNT-filled conductive adhesives is not so obvious. Since the thermal conduction in CNT is by phonon transfer, the nanometric size and the huge interface lead to strong phonon-scattering at the interface. Thus, a relatively low interfacial area, weak interfacial adhesion promotes the conduction of phonons and minimizes coupling losses. According to this, the non-treated MWCNTs seem to have the highest potential to improve the thermal conductivity of epoxies.



Denna post skapades 2012-12-18. Senast ändrad 2013-12-19.
CPL Pubid: 168093

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för mikroteknologi och nanovetenskap
Institutionen för teknisk fysik, Kondenserade materiens fysik (1900-2015)
Institutionen för mikroteknologi och nanovetenskap, Bionanosystem (2007-2015)

Ämnesområden

Elektronik

Chalmers infrastruktur