CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Adaptive Coded Modulation for Nonlinear Fiber-Optical Channels

Lotfollah Beygi (Institutionen för signaler och system, Kommunikationssystem) ; Erik Agrell (Institutionen för signaler och system, Kommunikationssystem) ; Magnus Karlsson (Institutionen för mikroteknologi och nanovetenskap, Fotonik)
2012 IEEE Globecom Workshops, Anaheim, USA, 3-7 December 2012 p. 331-335. (2012)
[Konferensbidrag, refereegranskat]

A low complexity hybrid polar low-density parity check (LDPC) coded modulation (CM) scheme is introduced for a single-wavelength fiber-optical channel. In the proposed scheme, we exploit a low complexity probabilistic shaping together with a four-dimensional (4D) mapping to reduce the complexity of a 4D non-binary LDPC CM scheme for fiber-optic channels. The proposed scheme has a flexible structure and it can be used as an adaptive-rate CM scheme. The numerical results show that the forward error correction (FEC) threshold of the introduced CM scheme can be significantly improved by probabilistic shaping with a negligible increase in the system complexity. In particular, the FEC threshold for the uncoded symbol error rate of the introduced CM scheme with 4D 16-ary quadrature amplitude modulation can be improved from 0.058 to 0.072 by exploiting a shaping overhead (redundancy) of 0.016 for an information bit error rate of 10^{-5}.

Nyckelord: Coded modulation, low density parity check code (LDPC), polar code, probabilistic shaping, nonlinear Kerr-effect, fiber-optic channel, Chromatic dispersion, adaptive coded modulation, and FEC threshold

Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2012-12-15. Senast ändrad 2016-04-28.
CPL Pubid: 167916


Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för signaler och system, Kommunikationssystem (1900-2017)
Institutionen för mikroteknologi och nanovetenskap, Fotonik


Informations- och kommunikationsteknik

Chalmers infrastruktur