CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Testing versus proving in climate impact research

Cezar Ionescu ; Patrik Jansson (Institutionen för data- och informationsteknik, Programvaruteknik (Chalmers))
Proceedings of the 18th Workshop Types for Proofs and Programs (TYPES’11) (1868-8969). Vol. 19 (2013), p. 41-54.
[Konferensbidrag, refereegranskat]

Higher-order properties arise naturally in some areas of climate impact research. For example, "vulnerability measures", crucial in assessing the vulnerability to climate change of various regions and entities, must fulfill certain conditions which are best expressed by quantification over all increasing functions of an appropriate type. This kind of property is notoriously difficult to test. However, for the measures used in practice, it is quite easy to encode the property as a dependent type and prove it correct. Moreover, in scientific programming, one is often interested in correctness "up to implication": the program would work as expected, say, if one would use real numbers instead of floating-point values. Such counterfactuals are impossible to test, but again, they can be easily encoded as types and proven. We show examples of such situations (encoded in Agda), encountered in actual vulnerability assessments.

Nyckelord: dependently-typed programming, domain-specific languages, climate impact research, formalization


Published 2013-01-09.



Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2012-12-13. Senast ändrad 2014-09-02.
CPL Pubid: 167769

 

Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)