CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Light scattering by particles with small-scale surface roughness: comparison of four classes of model geometries

Michael Kahnert (Institutionen för rymd- och geovetenskap, Global miljömätteknik och modellering) ; Timo Nousiainen ; Manu Anna Thomas ; Jani Tyynelä
Journal of Quantitative Spectroscopy and Radiative Transfer (0022-4073). Vol. 113 (2012), 18, p. 2356–2367.
[Artikel, refereegranskad vetenskaplig]

We compare four different model geometries for particles with small-scale surface roughness. The geometries are based on regular and stochastic surface perturbations, as well as on 2D- and 3D-roughness models. We further compare T-matrix and discrete dipole computations. Particle size parameters of 5 and 50 are considered, as well as refractive indices of 1.6 + 0.0005i and 3 +0.1i. The effect of small-scale surface roughness on the intensity and polarisation of the scattered light strongly depends on the size parameter and refractive index. In general, 2D surface roughness models predict stronger effects than 3D models. Stochastic surface roughness models tend to predict the strongest depolarising effects, while regular surface roughness models can have a stronger effect on the angular distribution of the scattered intensity. Computations with the discrete dipole approximation only cover a limited range of size parameters. T-matrix computations allow us to significantly extend that range, but at the price of restricting the model particles to symmetric surface perturbations with small amplitudes.

Nyckelord: Scattering, Aerosols, T-matrix, Surface roughness, Mineral dust, Lidar

Denna post skapades 2012-12-13. Senast ändrad 2016-08-19.
CPL Pubid: 167678


Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för rymd- och geovetenskap, Global miljömätteknik och modellering (2010-2017)


Meteorologi och atmosfärforskning

Chalmers infrastruktur