CPL - Chalmers Publication Library

Koppelman formulas on flag manifolds and harmonic forms

Författare och institution:
Håkan Samuelsson (Institutionen för matematiska vetenskaper, matematik, Chalmers/GU); Henrik Seppänen (-)
Publicerad i:
Mathematische Zeitschrift, 272 ( 3-4 ) s. 1087-1095
ISSN:
0025-5874
Publikationstyp:
Artikel, refereegranskad vetenskaplig
Publiceringsår:
2012
Språk:
engelska
Fulltextlänk:
Sammanfattning (abstract):
We construct Koppelman formulas on manifolds of flags in for forms with values in any holomorphic line bundle as well as in the tautological vector bundles and their duals. As an application we obtain new explicit proofs of some vanishing theorems of the Bott-Borel-Weil type by solving the corresponding -equation. We also construct reproducing kernels for harmonic (p, q)-forms in the case of Grassmannians.
Ämne (baseras på Högskoleverkets indelning av forskningsämnen):
NATURVETENSKAP ->
Matematik
Nyckelord:
Integral formula, Holomorphic vector bundle, Flag manifold, Lie group
Postens nummer:
167667
Posten skapad:
2012-12-13 10:56
Posten ändrad:
2012-12-13 13:39

Visa i Endnote-format