CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

A Machine Learning Approach to Ranging Error Mitigation for UWB Localization

Henk Wymeersch (Institutionen för signaler och system, Kommunikationssystem) ; Stefano Maranò ; Wesley Gifford ; Moe Win
IEEE Transactions on Communications (0090-6778). Vol. 60 (2012), 6, p. 1719 - 1728 .
[Artikel, refereegranskad vetenskaplig]

Location-awareness is becoming increasingly important in wireless networks. Indoor localization can be enabled through wideband or ultra-wide bandwidth (UWB) transmission, due to its fine delay resolution and obstacle-penetration capabilities. A major hurdle is the presence of obstacles that block the line-of-sight (LOS) path between devices, affecting ranging performance and, in turn, localization accuracy. Many techniques have been proposed to address this issue, most of which make modifications to the localization algorithm. Since many localization algorithms work with distance or angle estimates, rather than received waveforms, information inherent in the wideband waveform is lost, leading to sub-optimal ranging error mitigation. To avoid this information loss, we present a novel approach to mitigate ranging errors directly in the physical layer. In contrast to existing techniques, which detect the non-line-of-sight (NLOS) condition, our approach directly mitigates the bias incurred in both LOS and non-LOS conditions. In particular, we apply two classes of non-parametric regressors to form an estimate of the ranging error. Our work is based on, and validated by, an extensive indoor measurement campaign with FCC-compliant UWB radios. The results show that the proposed regressors provide significant performance improvements in various practical localization scenarios, compared to conventional approaches.

Nyckelord: Bayesian learning, Gaussian processes, Localization, UWB, ranging error mitigation, support vector machine

Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2012-12-11. Senast ändrad 2016-12-06.
CPL Pubid: 167436


Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för signaler och system, Kommunikationssystem (1900-2017)


Informations- och kommunikationsteknik

Chalmers infrastruktur