CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Analytical Solutions for the Pencil-Beam Equation with Energy Loss and Straggling

Tobias Gebäck (Institutionen för matematiska vetenskaper, matematik ; SuMo Biomaterials) ; Mohammad Asadzadeh (Institutionen för matematiska vetenskaper, matematik)
Transport Theory and Statistical Physics (0041-1450). Vol. 41 (2012), 5-6, p. 325-336.
[Artikel, refereegranskad vetenskaplig]

In this article, we derive equations approximating the Boltzmann equation for charged particle transport under the continuous slowing down assumption. The objective is to obtain analytical expressions that approximate the solution to the Boltzmann equation. The analytical expressions found are based on the Fermi-Eyges solution, but include correction factors to account for energy loss and spread. Numerical tests are also performed to investigate the validity of the approximations.

Nyckelord: Fermi-Eyges equation, energy loss straggling, analytical solution, transport

Denna post skapades 2012-11-30. Senast ändrad 2016-04-20.
CPL Pubid: 166937


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, matematik (2005-2016)
SuMo Biomaterials



Chalmers infrastruktur