CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Development of a 2-D 2-group neutron noise simulator

Christophe Demazière (Institutionen för reaktorfysik)
Annals of Nuclear Energy (0306-4549). Vol. 31 (2004), 6, p. 647-680.
[Artikel, refereegranskad vetenskaplig]

In this paper, the development of a so-called neutron noise simulator is reported. This simulator calculates both the direct and the adjoint reactor transfer function between a stationary noise source and its induced neutron noise for any 2-dimensional heterogeneous critical system. The main advantage of this neutron noise simulator is that any realistic core can be modelled, since the simulator is designed to rely on a set of material constants corresponding to the actual reactor operating conditions. The calculations are performed in the 2-group diffusion approximation and in the frequency domain. The spatial discretisation is carried out with respect to the finite difference scheme. The noise source, expressed as an "absorber of variable strength" type, is defined directly from the fluctuations of the macroscopic cross-sections and can be spatially distributed over the core or concentrated in a few discrete nodes. If the noise source is a point-source, the simulator actually estimates the 2-dimensional 2-group discretised Green's function of the system. From the calculated Green's function, the neutron noise induced by a "vibrating absorber" type of noise source can also be determined. Different benchmark cases show that this neutron noise simulator works satisfactorily.

Nyckelord: nuclear reactor, noise analysis, core calculations, dynamic reactor transfer function, benchmarking

Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2006-08-29. Senast ändrad 2015-09-01.
CPL Pubid: 1666


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för reaktorfysik (1960-2005)



Chalmers infrastruktur