CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

The Rao-Blackwellized marginal M-SMC filter for Bayesian multi-target tracking and labelling

E.H. Aoki ; Y. Boers ; Lennart Svensson (Institutionen för signaler och system, Signalbehandling) ; P.K. Mandai ; A. Bagchi
15th International Conference on Information Fusion, FUSION 2012. Singapore, 9 - 12 July 2012 p. 90-97. (2012)
[Konferensbidrag, refereegranskat]

In multi-target tracking (MTT), we are often interested not only in finding the position of the objects, but also allowing individual objects to be uniquely identified with the passage of time, by placing a label on each track. In some situations, however, observability conditions do not allow us to maintain the consistency in the correspondence between track labels and true objects. In this situation, it may be useful for the operator to know the probability of loss of this consistency, i.e. the probability of labelling error. This is theoretically possible using Bayesian multi-target tracking approaches like the Multi-target Sequential Monte Carlo (M-SMC) and the Multiple Hypothesis Tracking (MHT) filters, but unfortunately, it is well-known that these methods suffer from a form of degeneracy known as "self- resolving", that causes the probability of labelling error to be severely underestimated. In this paper, we propose a new Sequential Monte Carlo algorithm for the multi-target tracking and labelling (MTTL) problem, the Rao-Blackwellized marginal M-SMC filter, that deals with self-resolving and is valid for multi-target scenarios with unknown/varying number of targets.

Nyckelord: Individual objects, Multi-target tracking, Multiple hypothesis tracking, Multitarget, Sequential Monte Carlo



Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2012-11-14. Senast ändrad 2016-07-21.
CPL Pubid: 166034

 

Läs direkt!

Lokal fulltext (fritt tillgänglig)


Institutioner (Chalmers)

Institutionen för signaler och system, Signalbehandling

Ämnesområden

Transport
Signalbehandling

Chalmers infrastruktur