CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Primal convergence from dual subgradient methods for convex optimization

Emil Gustavsson (Institutionen för matematiska vetenskaper, matematik) ; Michael Patriksson (Institutionen för matematiska vetenskaper, matematik) ; Ann-Brith Strömberg (Institutionen för matematiska vetenskaper, matematik)

When solving a convex optimization problem through a Lagrangian dual reformulation subgradient optimization methods are favourably utilized, since they often find near-optimal dual solutions quickly. However, an optimal primal solution is generally not obtained directly through such a subgradient approach. We construct a sequence of convex combinations of primal subproblem solutions, a so called ergodic sequence, which is shown to converge to an optimal primal solution when the convexity weights are appropriately chosen. We generalize previous convergence results from linear to convex optimization and present a new set of rules for constructing the convexity weights that define the ergodic sequence of primal solutions. In contrast to previously proposed rules, they exploit more information from later subproblem solutions than from earlier ones. We evaluate the proposed rules on a set of nonlinear multicommodity flow problems and demonstrate that they clearly outperform the ones previously proposed.

Nyckelord: Convex programming, Lagrangian duality, subgradient optimization, ergodic convergence, nonlinear multicommodity flow problem

Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2012-11-12. Senast ändrad 2014-10-27.
CPL Pubid: 165918


Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, matematik (2005-2016)


Optimeringslära, systemteori

Chalmers infrastruktur