CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

High throughput fabrication of plasmonic nanostructures in nanofluidic pores for biosensing applications

Francesco Mazzotta (Institutionen för teknisk fysik, Biologisk fysik) ; Fredrik Höök (Institutionen för teknisk fysik, Biologisk fysik) ; Magnus Jonsson (Institutionen för teknisk fysik, Biologisk fysik)
Nanotechnology (0957-4484). Vol. 23 (2012), 41,
[Artikel, refereegranskad vetenskaplig]

One of the primary advantages of nanoscale sensors is that they often can provide conceptually new ways of performing sensing that are not feasible with their large-scale analogs. For example, the small size of nanoscale sensor elements, such as plasmonic metal nanoparticles, allows them to be combined with nanofluidic systems. Among the potential applications of such a combination is the efficient delivery of analyte to the sensor surface. With this in mind, in this work we look to address the challenge of creating and positioning nanoplasmonic sensor elements within nanofluidic pores. A scheme is presented that allows for the production of arrays of pores in a thin (220 nm) silicon nitride membrane with one plasmonic nanoparticle sensor element in each pore. The high throughput fabrication protocol is parallel and enables multiple sensor chips to be produced simultaneously, yet with accurate tuning of the dimension and shape of the nanoparticles. The presented system is shown to possess polarization-sensitive plasmonic resonances that can be tuned significantly in the visible wavelength range by just varying one process parameter. The thickness of the membrane could be optimized to minimize the influence of the optical membrane interference on the plasmonic readout. The sensitivity of the plasmon resonances to changes in refractive index, which forms the basis for using the system for biosensing, was found to be competitive with other nanoplasmonic sensors.

Nyckelord: quartz-crystal microbalance, colloidal lithography, flow-through, metal-films, gold, sensors, arrays, nanoholes, binding, nanoparticles

Denna post skapades 2012-11-09. Senast ändrad 2014-03-24.
CPL Pubid: 165794


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för teknisk fysik, Biologisk fysik (2007-2015)



Chalmers infrastruktur