CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Multitarget Sensor Resolution Model and Joint Probabilistic Data Association

Daniel Svensson (Institutionen för signaler och system, Signalbehandling) ; Martin Ulmke ; Lars Hammarstrand (Institutionen för signaler och system, Signalbehandling)
IEEE Transactions on Aerospace and Electronic Systems (0018-9251). Vol. 48 (2012), 4, p. 3418-3434.
[Artikel, refereegranskad vetenskaplig]

In the design of target tracking algorithms, the aspect of sensor resolution is rarely considered. Instead, it is usually assumed that all targets are always resolved, and that the only uncertainties in the data association are which targets that are detected, and which measurement each detected target gave rise to. However, in situations where the targets are closely spaced in relation to the sensor resolution, this assumption is not valid, and may lead to degraded tracking performance due to an incorrect description of the data. We present a framework for handling sensor resolution effects for an arbitrary, but known, number of targets. We propose a complete multitarget sensor resolution model that can be incorporated into traditional Bayesian tracking filters. Further, the exact form of the posterior probability density function (pdf) is derived, and two alternative ways of approximating that exact posterior density with a joint probabilistic data association (JPDA) filter are proposed. Evaluations of the resulting filters on simulated radar data show significantly increased tracking performance compared with the JPDA filter without a resolution model.

Nyckelord: Data models, Radar tracking, Remote sensing, Target tracking, Sensor resolution



Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2012-11-09. Senast ändrad 2014-12-09.
CPL Pubid: 165768

 

Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)