CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Absorption Enhancement in Lossy Transition Metal Elements of Plasmonic Nanosandwiches

Tomasz Antosiewicz (Institutionen för teknisk fysik, Kondenserade materiens teori) ; S. Peter Apell (Institutionen för teknisk fysik, Kondenserade materiens teori) ; Carl Wadell (Institutionen för teknisk fysik, Kemisk fysik) ; Christoph Langhammer (Institutionen för teknisk fysik, Kemisk fysik)
Journal of Physical Chemistry C (1932-7447). Vol. 116 (2012), 38, p. 20522-20529.
[Artikel, refereegranskad vetenskaplig]

Combination of catalytically active transition metals and surface plasmons offers a promising way to drive chemical reactions by converting incident visible light into energetic electron-hole pairs acting as a mediator. In such a reaction enhancement scheme, the conversion efficiency is dependent on light absorption in the metal. Hence, increasing absorption in the plasmonic structure is expected to increase generation of electron-hole pairs and, consequently, the reaction rate. Furthermore, the abundance of energetic electrons might facilitate new reaction pathways. In this work we discuss optical properties of homo- and heterometallic plasmonic nanosandwiches consisting of two parallel disks made of gold and palladium. We show how near-field coupling between the sandwich elements can be used to enhance absorption in one of them. The limits of this enhancement are investigated using finite-difference time-domain simulations. Physical insight is gained through a simple coupled dipole analysis of the nanostructure. For small palladium disks (compared to the gold disk), total absorption enhancement integrated over the near visible solar AM 1.5 spectrum is 8-fold, while for large palladium disks, similar in size to the gold one, it exceeds three.

Nyckelord: discrete-dipole approximation, silver nanoparticles, optical-constants, perfect absorber, real-time, surface, nanostructures, resonance, single, particles

Denna post skapades 2012-11-07. Senast ändrad 2017-09-14.
CPL Pubid: 165604


Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för teknisk fysik, Kondenserade materiens teori (1900-2015)
Institutionen för teknisk fysik, Kemisk fysik (1900-2015)


Teknisk fysik

Chalmers infrastruktur

Relaterade publikationer

Denna publikation ingår i:

Nanoplasmonics for Absorption Engineering and Hydrogen Sensing

Plasmonic Nanostructures for Optical Absorption Engineering and Hydrogen Sensing