CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Reversible Changes in Cell Morphology due to Cytoskeletal Rearrangements Measured in Real-Time by QCM-D

Nina Tymchenko (Institutionen för teknisk fysik, Biologisk fysik) ; Erik Nilebäck (Institutionen för teknisk fysik, Biologisk fysik) ; Marina V. Voinova (Institutionen för mikroteknologi och nanovetenskap, Bionanosystem) ; Julie Gold (Institutionen för teknisk fysik, Biologisk fysik) ; Bengt Kasemo (Institutionen för teknisk fysik, Kemisk fysik) ; Sofia Svedhem (Institutionen för teknisk fysik, Biologisk fysik)
Biointerphases (1559-4106). Vol. 7 (2012), 1-4, p. 43-.
[Artikel, refereegranskad vetenskaplig]

The mechanical properties and responses of cells to external stimuli (including drugs) are closely connected to important phenomena such as cell spreading, motility, activity, and potentially even differentiation. Here, reversible changes in the viscoelastic properties of surface-attached fibroblasts were induced by the cytoskeleton-perturbing agent cytochalasin D, and studied in realtime by the quartz crystal microbalance with dissipation (QCM-D) technique. QCM-D is a surface sensitive technique that measures changes in (dynamically coupled) mass and viscoelastic properties close to the sensor surface, within a distance into the cell that is usually only a fraction of its size. In this work, QCM-D was combined with light microscopy to study in situ cell attachment and spreading. Overtone-dependent changes of the QCM-D responses (frequency and dissipation shifts) were first recorded, as fibroblast cells attached to protein-coated sensors in a window equipped flow module. Then, as the cell layer had stabilised, morphological changes were induced in the cells by injecting cytochalasin D. This caused changes in the QCM-D signals that were reversible in the sense that they disappeared upon removal of cytochalasin D. These results are compared to other cell QCM-D studies. Our results stress the combination of QCM-D and light microscopy to help interpret QCM-D results obtained in cell assays and thus suggests a direction to develop the QCM-D technique as an even more useful tool for real-time cell studies.

Nyckelord: quartz-crystal microbalance, supported lipid-bilayers, dissipation, factor, adhesion, attachment, dynamics, surfaces, growth, force, films

Denna post skapades 2012-10-29. Senast ändrad 2016-07-05.
CPL Pubid: 165181


Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för teknisk fysik, Biologisk fysik (2007-2015)
Institutionen för mikroteknologi och nanovetenskap, Bionanosystem (2007-2015)
Institutionen för teknisk fysik, Kemisk fysik (1900-2015)


Fysikalisk kemi

Chalmers infrastruktur

Relaterade publikationer

Denna publikation ingår i:

QCM-D – with focus on biosensing in biomolecular and cellular systems