CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Exergetic efficiency of high-temperature-lift chemical heat pump (CHP) based on CaO/CO2 and CaO/H2O working pairs

Mehdi Arjmand (Institutionen för kemi- och bioteknik, Oorganisk miljökemi) ; Longcheng Liu ; Ivars Neretnieks
International Journal of Energy Research (1099-114X). Vol. 37 (2013), 9, p. 1122–1131.
[Artikel, refereegranskad vetenskaplig]

The use of reversible chemical reactions in recuperation of heat has gained significant interest due to higher magnitude of reaction heat compared to that of the latent or sensible heat. To implement chemical reactions for upgrading heat, a chemical heat pump (CHP) may be used. A CHP uses a reversible chemical reaction where the forward and the reverse reactions take place at two different temperatures, thus allowing heat to be upgraded or degraded depending on the mode of operation. In this work, an exergetic efficiency model for a CHP operating in the temperature-level amplification mode has been developed. The first law and the exergetic efficiencies are compared for two working pairs, namely, CaO/CO2 and CaO/H2O for high-temperature high-lift CHPs. The exergetic efficiency increases for both working pairs with increase in task, TH, decrease in heat source, TM, and increase in condenser, TL, temperatures. It is also observed that the difference in reaction enthalpies and specific heats of the involving reactants affects the extent of increase or decrease in the exergetic efficiency of the CHP operating for temperature-level amplification.

Nyckelord: chemical heat pump (CHP); first law efficiency; second law (exergetic) efficiency; temperature amplification; heat transformer; CaO/CO2; CaO/H2O

Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2012-10-13. Senast ändrad 2013-08-02.
CPL Pubid: 164706


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för kemi- och bioteknik, Oorganisk miljökemi (2005-2014)



Chalmers infrastruktur