CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Spherical Harmonics and a Semidiscrete Finite Element Approximation for the Transport Equation

Mohammad Asadzadeh (Institutionen för matematiska vetenskaper, matematik) ; Tobias Gebäck (Institutionen för matematiska vetenskaper, matematik ; SuMo Biomaterials)
Transport Theory and Statistical Physics (0041-1450). Vol. 41 (2012), 1-2, p. 53-70.
[Artikel, refereegranskad vetenskaplig]

This work is the first part in a series of two articles, where the objective is to construct, analyze, and implement realistic particle transport models relevant in applications in radiation cancer therapy. Here we use spherical harmonics and derive an energy-dependent model problem for the transport equation. Then we show stability and derive optimal convergence rates for semidiscrete (discretization in energy) finite element approximations of this model problem. The fully discrete problem that also considers the study of finite element discretizations in radial and spatial domains as well is the subject of a forthcoming article.

Nyckelord: spherical harmonics, transport equation, finite element method, charged particle beams, partial-differential-equations, inhomogeneous-media, electron-transport, bipartition model, ion-transport



Denna post skapades 2012-10-04. Senast ändrad 2016-04-20.
CPL Pubid: 164391

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, matematik (2005-2016)
SuMo Biomaterials

Ämnesområden

Matematik

Chalmers infrastruktur