CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Superhydrophobic behaviour of plasma modified electrospun cellulose nanofiber-coated microfibers

Anna Thorvaldsson ; Petra Edvinsson (Institutionen för kemi- och bioteknik, Polymerteknologi) ; Alexandra Glantz (Institutionen för kemi- och bioteknik, Polymerteknologi) ; Katia Rodriguez (Institutionen för kemi- och bioteknik, Polymerteknologi) ; P. Walkenstrom ; Paul Gatenholm (Institutionen för kemi- och bioteknik, Polymerteknologi)
Cellulose (0969-0239). Vol. 19 (2012), 5, p. 1743-1748.
[Artikel, refereegranskad vetenskaplig]

In this work, a method is presented for production of a textile cellulose fiber with non-wetting properties suitable for applications ranging from wound care and tissue engineering to clothing and other textile applications. Non-wettability is achieved by coating a textile cellulose microfiber with electrospun cellulose nanofibers, creating a large and rough surface area that is further plasma treated with fluorine plasma. High surface roughness and efficient deposition of covalently bound fluorine groups results in the fiber exhibiting non-wetting properties with contact angle measurements indicating superhydrophobicity (> 150A degrees water contact angle). It is an environmentally friendly method and the flexibility of the electrospinning process allows for careful design of material properties regarding everything from material choice and surface chemistry to fiber morphology and fiber assembly, pointing to the potential of the method and the developed fibers within a wide range of applications.

Nyckelord: Cellulose, Nanofibers, Microfibers, Electrospinning, Wetting, Plasma, surface modification, fibers, diameter, acetate, polymer

Denna post skapades 2012-10-04. Senast ändrad 2016-12-05.
CPL Pubid: 164347


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för kemi- och bioteknik, Polymerteknologi (2005-2014)



Chalmers infrastruktur