CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Stabilized Finite Element Method for Solids with Large Gradient Mechanical Properties

Samuel Lorin (Institutionen för produkt- och produktionsutveckling, Produktutveckling) ; Robert Sandboge
ASME 2012 International Mechanical Engineering Congress & Exposition Vol. 8 (2012), p. 485-494.
[Konferensbidrag, refereegranskat]

Many polymers exhibit mechanical properties that vary greatly with temperature. The stress-strain relationships may include a tensile modulus that for certain temperature ranges decreases drastically. For instance, linear amorphous polymers have glassy-transition-rubbery-flow regions where the Young's modulus is nearly constant in the glassy and rubbery plateau, but decreases rapidly with temperature in the transition and flow regions. To predict displacement of solids the finite element method (FEM) is often used. However, for structural problem with large variations of material properties the stability of the solution is affected negatively. In this work we formulate a sub-scale finite element formulation for thermal plasticity problems based on differential inclusions of elliptic and parabolic type

Nyckelord: Plasticity, finite element method

Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2012-10-01. Senast ändrad 2015-02-20.
CPL Pubid: 164200


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för produkt- och produktionsutveckling, Produktutveckling (2005-2017)



Chalmers infrastruktur

Relaterade publikationer

Denna publikation ingår i:

Geometric Variation Simulation for the Development of Products with Plastic Components