CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Evolutionary branching in a stochastic population model with discrete mutational steps

Serik Sagitov (Institutionen för matematiska vetenskaper, matematisk statistik) ; Bernhard Mehlig ; Peter Jagers (Institutionen för matematiska vetenskaper, matematisk statistik) ; V Vatutin
Theoretical Population Biology (0040-5809). Vol. 83 (2013), p. 145-154 .
[Artikel, refereegranskad vetenskaplig]

Evolutionary branching is analysed in a stochastic, individual-based population model under mutation and selection. In such models, the common assumption is that individual reproduction and life career are characterised by values of a trait, and also by population sizes, and that mutations lead to small changes ϵ in trait value. Then, traditionally, the evolutionary dynamics is studied in the limit ϵ→0. In the present approach, small but non-negligible mutational steps are considered. By means of theoretical analysis in the limit of infinitely large populations, as well as computer simulations, we demonstrate how discrete mutational steps affect the patterns of evolutionary branching. We also argue that the average time to the first branching depends in a sensitive way on both mutational step size and population size.

Nyckelord: Evolutionary branching, Genetic drift, Selection, Adaptation



Denna post skapades 2012-09-23. Senast ändrad 2016-07-11.
CPL Pubid: 163767

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, matematisk statistik (2005-2016)
Institutionen för fysik (GU) (GU)

Ämnesområden

Matematik
Fysik
Biologiska vetenskaper

Chalmers infrastruktur