CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Interspecies correlation for neutrally evolving traits

Serik Sagitov (Institutionen för matematiska vetenskaper, matematisk statistik) ; Krzysztof Bartoszek (Institutionen för matematiska vetenskaper)
Journal of Theoretical Biology (0022-5193). Vol. 309 (2012), p. 11-19.
[Artikel, refereegranskad vetenskaplig]

A simple way to model phenotypic evolution is to assume that after splitting, the trait values of the sister species diverge as independent Brownian motions. Relying only on a prior distribution for the underlying species tree (conditioned on the number, n, of extant species) we study the random vector (X-1, ... , X-n) of the observed trait values. In this paper we derive compact formulae for the variance of the sample mean and the mean of the sample variance for the vector (X-1, ... , X-n). The key ingredient of these formulae is the correlation coefficient between two trait values randomly chosen from (X-1,X- ... , X-n). This interspecies correlation coefficient takes into account not only variation due to the random sampling of two species out of n and the stochastic nature of Brownian motion but also the uncertainty in the phylogenetic tree. The latter is modeled by a (supercritical or critical) conditioned branching process. In the critical case we modify the Aldous-Popovic model by assuming a proper prior for the time of origin.

Nyckelord: Phylogenetic comparative methods, Birth and death process, Conditioned, phylogenetic diversity, branch lengths, adaptation, evolution, models, trees

Denna post skapades 2012-09-13. Senast ändrad 2012-09-19.
CPL Pubid: 163281


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, matematisk statistik (2005-2016)
Institutionen för matematiska vetenskaperInstitutionen för matematiska vetenskaper (GU)



Chalmers infrastruktur



Denna publikation är ett resultat av följande projekt:

Stochastic models of gene and species trees (VR//2010-5623)