CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Modern battery electrolytes: Ion-ion interactions in Li+/Na+ conductors from DFT calculations

Erlendur Jónsson (Institutionen för teknisk fysik, Kondenserade materiens fysik) ; Patrik Johansson (Institutionen för teknisk fysik, Kondenserade materiens fysik)
Physical Chemistry Chemical Physics (1463-9076). Vol. 14 (2012), 30, p. 10774-10779.
[Artikel, refereegranskad vetenskaplig]

Sodium-ion batteries, the sodium counterpart of the ubiquitous lithium-ion batteries, are currently being developed as a complementary technology to assure resource availability. As battery electrolytes tend to be one of the more limiting parts of any battery for both performance and life-length, chemical and physical data on sodium-ion battery electrolytes are important for rational development. Here the cation-anion interaction, a key property of any salt used in an electrolyte, of a number of salts is probed using numerous DFT methods via the ion-pair dissociation reaction: AlkAn reversible arrow Alk(+) + An(-), where An(-) is any anion and Alk(+) is Na+ or Li+, the latter used here for a straight-forward literature and methodology comparison. Furthermore, the applicability of different DFT functionals for these types of calculations is benchmarked vs. a robust higher accuracy method (G4MP2).

Nyckelord: stable lithium-salts, electrochemical properties, thermochemical, kinetics, nonaqueous solutions, density functionals, basis-sets, anions, conductivity, complexes, molecules

Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2012-09-06. Senast ändrad 2014-12-09.
CPL Pubid: 163007


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för teknisk fysik, Kondenserade materiens fysik (1900-2015)



Chalmers infrastruktur

C3SE/SNIC (Chalmers Centre for Computational Science and Engineering)

Relaterade publikationer

Denna publikation ingår i:

Ab initio modelling of alkali-ion battery electrolyte properties