CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Influence of Fiber-Bragg Grating-Induced Group-Delay Ripple in High-Speed Transmission Systems

Ekawit Tipsuwannakul (Institutionen för mikroteknologi och nanovetenskap, Fotonik) ; Jianqiang Li (Institutionen för mikroteknologi och nanovetenskap, Fotonik) ; Tobias Eriksson (Institutionen för mikroteknologi och nanovetenskap, Fotonik) ; L. Egnell ; F. Sjostrom ; J. Pejnefors ; Peter Andrekson (Institutionen för mikroteknologi och nanovetenskap, Fotonik) ; Magnus Karlsson (Institutionen för mikroteknologi och nanovetenskap, Fotonik)
Journal of Optical Communications and Networking (1943-0620). Vol. 4 (2012), 6, p. 514-521.
[Artikel, övrig vetenskaplig]

The implementation of a chirped fiber-Bragg grating (FBG) for dispersion compensation in high-speed (up to 120 Gbit/s) transmission systems with differential and coherent detection is, for the first time, experimentally investigated. For systems with differential detection, we examine the influence of group-delay ripple (GDR) in 40 GBd 2-, 4-, and 8-ary differential phase shift keying (DPSK) systems. Furthermore, we conduct a nonlinear-tolerance comparison between the systems implementing dispersion-compensating fibers and FBG modules, using a 5 x 80 Gbit/s 100-GHz-spaced wavelength division multiplexing 4-ary DPSK signal. The results show that the FBG-based system provides a 2 dB higher optimal launch power, which leads to more than 3 dB optical signal-to-noise ratio (OSNR) improvement at the receiver. For systems with coherent detection, we evaluate the influence of GDR in a 112 Gbit/s dual-polarization quadrature phase shift keying system with respect to signal wavelength. In addition, we demonstrate that, at the optimal launch power, the 112 Gbit/s systems implementing FBG modules and that using electronic dispersion compensation provide similar performance after 840 km transmission despite the fact that the FBG-based system delivers lower OSNR at the receiver. Lastly, we quantify the GDR mitigation capability of a digital linear equalizer in the 112 Gbit/s coherent systems with respect to the equalizer tap number (N-tap). The results indicate that at least N-tap = 9 is required to confine Q-factor variation within 1 dB.

Nyckelord: Coherent detection, Differential detection, Dispersion compensation, Equalization, Fiber Bragg, dispersion compensation



Denna post skapades 2012-09-05. Senast ändrad 2014-09-02.
CPL Pubid: 162900

 

Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för mikroteknologi och nanovetenskap, Fotonik

Ämnesområden

Telekommunikation

Chalmers infrastruktur