CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

The gauge structure of generalised diffeomorphisms

David S. Berman ; Martin Cederwall (Institutionen för fundamental fysik, Matematisk fysik) ; Axel Kleinschmidt ; Daniel C. Thompson
Journal of High Energy Physics (1029-8479). Vol. 1301 (2012), 1, p. 64.
[Artikel, refereegranskad vetenskaplig]

We investigate the generalised diffeomorphisms in M-theory, which are gauge transformations unifying diffeomorphisms and tensor gauge transformations. After giving an En(n)-covariant description of the gauge transformations and their commutators, we show that the gauge algebra is infinitely reducible, i.e., the tower of ghosts for ghosts is infinite. The Jacobiator of generalised diffeomorphisms gives such a reducibility transformation. We give a concrete description of the ghost structure, and demonstrate that the infinite sums give the correct (regularised) number of degrees of freedom. The ghost towers belong to the sequences of rep- resentations previously observed appearing in tensor hierarchies and Borcherds algebras. All calculations rely on the section condition, which we reformulate as a linear condition on the cotangent directions. The analysis holds for n < 8. At n = 8, where the dual gravity field becomes relevant, the natural guess for the gauge parameter and its reducibility still yields the correct counting of gauge parameters.

Nyckelord: Space-Time Symmetries, M-Theory



Denna post skapades 2012-08-31. Senast ändrad 2014-11-10.
CPL Pubid: 162753

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för fundamental fysik, Matematisk fysik (2005-2013)

Ämnesområden

Geometri
Matematisk fysik
Relativitetsteori, gravitation

Chalmers infrastruktur