CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Evolutionary engineering of Saccharomyces cerevisiae for efficient aerobic xylose consumption

Gionata Scalcinati (Institutionen för kemi- och bioteknik, Systembiologi) ; José Manuel Otero Romero (Institutionen för kemi- och bioteknik) ; J. R. H. Van Vleet ; T. W. Jeffries ; Lisbeth Olsson (Institutionen för kemi- och bioteknik, Industriell Bioteknik ) ; Jens B. Nielsen (Institutionen för kemi- och bioteknik, Systembiologi)
Fems Yeast Research (1567-1356). Vol. 12 (2012), 5, p. 582-597.
[Artikel, refereegranskad vetenskaplig]

Industrial biotechnology aims to develop robust microbial cell factories, such as Saccharomyces cerevisiae, to produce an array of added value chemicals presently dominated by petrochemical processes. Xylose is the second most abundant monosaccharide after glucose and the most prevalent pentose sugar found in lignocelluloses. Significant research efforts have focused on the metabolic engineering of S similar to cerevisiae for fast and efficient xylose utilization. This study aims to metabolically engineer S similar to cerevisiae, such that it can consume xylose as the exclusive substrate while maximizing carbon flux to biomass production. Such a platform may then be enhanced with complementary metabolic engineering strategies that couple biomass production with high value-added chemical. Saccharomyces cerevisiae, expressing xylose reductase, xylitol dehydrogenase and xylulose kinase, from the native xylose-metabolizing yeast Pichia stipitis, was constructed, followed by a directed evolution strategy to improve xylose utilization rates. The resulting S similar to cerevisiae strain was capable of rapid growth and fast xylose consumption producing only biomass and negligible amount of byproducts. Transcriptional profiling of this strain was employed to further elucidate the observed physiology confirms a strongly up-regulated glyoxylate pathway enabling respiratory metabolism. The resulting strain is a desirable platform for the industrial production of biomass-related products using xylose as a sole carbon source.

Nyckelord: directed evolution, metabolic engineering, xylose, Saccharomyces, pentose-phosphate pathway, ethanol-production, pichia-stipitis, gene-expression, transcriptional regulation, xylitol dehydrogenase, chemostat cultures, reductase-activity, genome database, cytosolic nadh

Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2012-08-23. Senast ändrad 2015-03-30.
CPL Pubid: 162505


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för kemi- och bioteknik, Systembiologi (2008-2014)
Institutionen för kemi- och bioteknik (2005-2014)
Institutionen för kemi- och bioteknik, Industriell Bioteknik (2008-2014)


Hållbar utveckling

Chalmers infrastruktur