CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Error estimates with smooth and nonsmooth data for a finite element method for the Cahn-Hilliard equation

Charles M. Elliott ; Stig Larsson (Institutionen för matematik)
Math. Comp. (0025-5718). Vol. 58 (1992), 198, p. 603–630, S33–S36..
[Artikel, refereegranskad vetenskaplig]

A finite element method for the Cahn-Hilliard equation (a semilinear parabolic equation of fourth order) is analyzed, both in a spatially semidiscrete case and in a completely discrete case based on the backward Euler method. Error bounds of optimal order over a finite time interval are obtained for solutions with smooth and nonsmooth initial data. A detailed study of the regularity of the exact solution is included. The analysis is based on local Lipschitz conditions for the nonlinearity with respect to Sobolev norms, and the existence of a Ljapunov functional for the exact and the discretized equations is essential. A result concerning the convergence of the attractor of the corresponding approximate nonlinear semigroup (upper semicontinuity with respect to the discretization parameters) is obtained as a simple application of the nonsmooth data error estimate.



Denna post skapades 2012-08-16. Senast ändrad 2014-09-02.
CPL Pubid: 161916

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för matematik (1987-2001)

Ämnesområden

Beräkningsmatematik

Chalmers infrastruktur