CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.


G Nguetseng ; Nils Svanstedt (Institutionen för matematiska vetenskaper)
BANACH JOURNAL OF MATHEMATICAL ANALYSIS (1735-8787). Vol. 5 (2011), 1, p. 101-135.
[Artikel, refereegranskad vetenskaplig]

We discuss two new concepts of convergence in Lp-spaces, the socalled weak-convergence and strong convergence, which are intermediate between classical weak convergence and strong convergence. We also introduce the concept of -convergence for Radon measures. Our basic tool is the classical Gelfand representation theory. Apart from being a natural generalization of well-known two-scale convergence theory, the present study lays the foundation of the mathematical framework that is needed to undertake a systematic study of deterministic homogenization problems beyond the usual periodic setting. A few homogenization problems are worked out by way of illustration.

Nyckelord: homogenization, homogenization algebras, sigma-convergence, gelfand transformation

Denna post skapades 2012-08-16. Senast ändrad 2012-08-17.
CPL Pubid: 161747


Institutioner (Chalmers)

Institutionen för matematiska vetenskaperInstitutionen för matematiska vetenskaper (GU)



Chalmers infrastruktur