CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Determination of the Bending Rigidity of Graphene via Electrostatic Actuation of Buckled Membranes

Niklas Lindahl ; Daniel Midtvedt (Institutionen för teknisk fysik, Kondenserade materiens teori) ; Johannes Svensson ; O. A. Nerushev ; Niclas Lindvall (Institutionen för mikroteknologi och nanovetenskap, Kvantkomponentfysik) ; Andreas Isacsson (Institutionen för teknisk fysik, Kondenserade materiens teori) ; Eleanor E B Campbell
Nano Letters (1530-6984). Vol. 12 (2012), 7, p. 3526-3531.
[Artikel, refereegranskad vetenskaplig]

Classical continuum mechanics is used extensively to predict the properties of nanoscale materials such as graphene. The bending rigidity, kappa, is an important parameter that is used, for example, to predict the performance of graphene nanoelectromechanical devices and also ripple formation. Despite its importance, there is a large spread in the theoretical predictions of kappa for few-layer graphene. We have used the snap-through behavior of convex buckled graphene membranes under the application of electrostatic pressure to determine experimentally values of kappa for double-layer graphene membranes. We demonstrate how to prepare convex-buckled suspended graphene ribbons and fully clamped suspended membranes and show how the determination of the curvature of the membranes and the critical snap-through voltage, using AFM, allows us to extract kappa. The bending rigidity of bilayer graphene membranes under ambient conditions was determined to be 35.5(-15.0)(+20.0) eV. Monolayers are shown to have significantly lower kappa than bilayers.

Nyckelord: Few-layer graphene, bending rigidity, buckled membranes, sheets



Denna post skapades 2012-08-09. Senast ändrad 2016-08-22.
CPL Pubid: 161324

 

Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för fysik (GU) (GU)
Institutionen för teknisk fysik, Kondenserade materiens teori (1900-2015)
Institutionen för mikroteknologi och nanovetenskap, Kvantkomponentfysik

Ämnesområden

Fysik

Chalmers infrastruktur

Relaterade publikationer

Denna publikation ingår i:


Nonlinear electromechanics of nanomembranes and nanotubes