CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

On Wavelet-Galerkin methods for semilinear parabolic equations with additive noise

Mihaly Kovacs ; Stig Larsson (Institutionen för matematiska vetenskaper, matematik) ; Karsten Urban
(2012)
[Preprint]

We consider the semilinear stochastic heat equation perturbed by additive noise. After time-discretization by Euler's method the equation is split into a linear stochastic equation and a non-linear random evolution equation. The linear stochastic equation is discretized in space by a non-adaptive wavelet-Galerkin method. This equation is solved first and its solution is substituted into the nonlinear random evolution equation, which is solved by an adaptive wavelet method. We provide mean square estimates for the overall error.

Nyckelord: Rothe's method, wavelets, stochastic



Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2012-08-03. Senast ändrad 2017-11-29.
CPL Pubid: 161011

 

Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, matematik (2005-2016)

Ämnesområden

Materialvetenskap
Beräkningsmatematik

Chalmers infrastruktur