CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Trace formulas and $p$-essentially normal properties of quotient modules on the bidisk

K. Y. Guo ; K. Wang ; Genkai Zhang (Institutionen för matematiska vetenskaper, matematik)
Journal of Operator Theory (0379-4024). Vol. 67 (2012), 2, p. 511-535.
[Artikel, refereegranskad vetenskaplig]

Let M be an invariant subspace of the multiplication operators M-z and M-w on the Hardy or Bergman space on D-2 = {(z,w) : |z|, |w| < 1}, and S-f = PM perpendicular to MfPM perpendicular to be the compressions on the quotient module M-perpendicular to of the multiplication operators M-f. We study the Schatten-von Neumann, in particular trace and weak trace class, properties of commutators [S-f*, S-f], and we prove the trace formulas for the commutators. Similar trace formulas for Hankel type operators are also obtained.

Nyckelord: Hilbert module, quotient module, essentially normal quotient, trace class, Hilbert-Schmidt class, normal hilbert modules, hankel-operators, reproducing kernels, k-homology, commutators, extensions, spaces



Denna post skapades 2012-08-02. Senast ändrad 2016-07-12.
CPL Pubid: 160925

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, matematik (2005-2016)

Ämnesområden

Matematik

Chalmers infrastruktur