CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

A method to integrate patterned electrospun fibers with microfluidic systems to generate complex microenvironments for cell culture applications

Patric Wallin (Institutionen för teknisk fysik, Biologisk fysik) ; Carl Zandén (Institutionen för mikroteknologi och nanovetenskap, Bionanosystem) ; Björn Carlberg (Institutionen för mikroteknologi och nanovetenskap, Bionanosystem) ; Nina Hellström Erkenstam ; Johan Liu (Institutionen för mikroteknologi och nanovetenskap, Bionanosystem) ; Julie Gold (Institutionen för teknisk fysik, Biologisk fysik)
Biomicrofluidics (1932-1058). Vol. 6 (2012), 2,
[Artikel, refereegranskad vetenskaplig]

The properties of a cell's microenvironment are one of the main driving forces in cellular fate processes and phenotype expression in vivo. The ability to create controlled cell microenvironments in vitro becomes increasingly important for studying or controlling phenotype expression in tissue engineering and drug discovery applications. This includes the capability to modify material surface properties within well-defined liquid environments in cell culture systems. One successful approach to mimic extra cellular matrix is with porous electrospun polymer fiber scaffolds, while microfluidic networks have been shown to efficiently generate spatially and temporally defined liquid microenvironments. Here, a method to integrate electrospun fibers with microfluidic networks was developed in order to form complex cell microenvironments with the capability to vary relevant parameters. Spatially defined regions of electrospun fibers of both aligned and random orientation were patterned on glass substrates that were irreversibly bonded to microfluidic networks produced in poly-dimethyl-siloxane. Concentration gradients obtained in the fiber containing channels were characterized experimentally and compared with values obtained by computational fluid dynamic simulations. Velocity and shear stress profiles, as well as vortex formation, were calculated to evaluate the influence of fiber pads on fluidic properties. The suitability of the system to support cell attachment and growth was demonstrated with a fibroblast cell line. The potential of the platform was further verified by a functional investigation of neural stem cell alignment in response to orientation of electrospun fibers versus a microfluidic generated chemoattractant gradient of stromal cell-derived factor 1 alpha. The described method is a competitive strategy to create complex microenvironments in vitro that allow detailed studies on the interplay of topography, substrate surface properties, and soluble microenvironment on cellular fate processes.

Nyckelord: biomedical equipment, bioMEMS, cellular biophysics, computational fluid dynamics, drugs, breast-cancer cells, stem-cells, in-vitro, nanofibers, adhesion, growth, migration, gradients, diameter, strength

Denna post skapades 2012-08-01. Senast ändrad 2015-07-02.
CPL Pubid: 160865


Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för teknisk fysik, Biologisk fysik (2007-2015)
Institutionen för mikroteknologi och nanovetenskap, Bionanosystem (2007-2015)
Institutionen för neurovetenskap och fysiologi, sektionen för klinisk neurovetenskap och rehabilitering (2006-2016)


Medicinsk bioteknologi

Chalmers infrastruktur

Relaterade publikationer

Denna publikation ingår i:

Creating cell microenvironments in vitro

Functional Fiber Based Materials for Microsystem Applications

From Tissue Engineering to Engineering Education Research: Designing in vitro cell microenvironments and undergraduate research experiences