CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

A Discrete-Time Model for Uncompensated Single-Channel Fiber-Optical Links

Lotfollah Beygi (Institutionen för signaler och system, Kommunikationssystem) ; Erik Agrell (Institutionen för signaler och system, Kommunikationssystem) ; Pontus Johannisson (Institutionen för mikroteknologi och nanovetenskap, Fotonik) ; Magnus Karlsson (Institutionen för mikroteknologi och nanovetenskap, Fotonik) ; Henk Wymeersch (Institutionen för signaler och system, Kommunikationssystem)
IEEE Transactions on Communications (0090-6778). Vol. 60 (2012), 11, p. 3440-3450 .
[Artikel, refereegranskad vetenskaplig]

An analytical discrete-time model is introduced for single-wavelength polarization multiplexed nonlinear fiber-optical channels based on the symmetrized split-step Fourier method (SSFM). According to this model, for high enough symbol rates, a fiber-optic link can be described as a linear dispersive channel with additive white Gaussian noise (AWGN) and a complex scaling. The variance of this AWGN noise and the attenuation are computed analytically as a function of input power and channel parameters. The results illustrate a cubic growth of the noise variance with input power. Moreover, the cross effect between the two polarizations and the interaction of amplifier noise and the transmitted signal due to the nonlinear Kerr effect are described. In particular, it is found that the channel noise variance in one polarization is affected twice as much by the transmitted power in that polarization than by the transmitted power in the orthogonal polarization. The effect of pulse shaping is also investigated through numerical simulations. Finally, it is shown that the analytical performance results based on the new model are in close agreement with numerical results obtained using the SSFM for a symbol rate of 28 Gbaud and above.

Nyckelord: Channel modeling, Nonlinear fiber-optic channels, Chromatic dispersion, Nonlinear phase-noise, Symmetrized split-step Fourier method (SSFM), Nonlinear Schrödinger equation

Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2012-07-10. Senast ändrad 2016-12-06.
CPL Pubid: 160319


Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för signaler och system, Kommunikationssystem (1900-2017)
Institutionen för mikroteknologi och nanovetenskap, Fotonik


Informations- och kommunikationsteknik

Chalmers infrastruktur

Relaterade publikationer

Denna publikation ingår i:

Channel-Aware Multilevel Coded Modulation for Coherent Fiber-Optic Communications