CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Adaptive neural nets filter using a recursive Levenberg-Marquardt search direction

Lester S.H. Ngia (Institutionen för signaler och system, Signalbehandling) ; Jonas Sjöberg (Institutionen för signaler och system, Signalbehandling) ; Mats Viberg (Institutionen för signaler och system, Signalbehandling)
Proc. Asilomar Conf. Signals, Systems, Computers, 01 Nov 1998-04 Nov 1998 Vol. 1 (1998), p. 697-701.
[Konferensbidrag, refereegranskat]

This paper proposes a recursive Levenberg-Marquardt (LM) search direction as the training algorithm for non-linear adaptive filters, which use multi-layer feed forward neural nets as the filter structures. The neural nets can be considered as a class of non-linear adaptive filters with transversal or recursive filter structures. In the off-line training, the LM method is regarded as an intermediate method between the steepest descent (SD) and Gauss-Newton (GN) methods, and it has better convergence properties than the other two methods. In the echo cancellation experiments, the recursive LM algorithm converges faster and gives higher echo return loss enhancement (ERLE) than the recursive SD and GN algorithms.



Denna post skapades 2006-08-25. Senast ändrad 2014-09-02.
CPL Pubid: 15945

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för signaler och system, Signalbehandling

Ämnesområden

Information Technology

Chalmers infrastruktur