CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Statistical methods for assessing and analysing the building performance in respect to the future climate

Vahid M. Nik (Institutionen för bygg- och miljöteknik, Byggnadsteknologi) ; Angela Sasic Kalagasidis (Institutionen för bygg- och miljöteknik, Byggnadsteknologi) ; E. Kjellstrom
Building and Environment (0360-1323). Vol. 53 (2012), p. 107-118.
[Artikel, refereegranskad vetenskaplig]

Global warming and its effects on climate are of great concern. Climate change can affect buildings in different ways. Increased structural loads from wind and water, changes in energy need and decreased moisture durability of materials are some examples of the consequences. Future climate conditions are simulated by global climate models (GCMs). Downscaling by regional climate models (RCMs) provides weather data with suitable temporal and spatial resolutions for direct use in building simulations. There are two major challenges when the future climate data are used in building simulations. The first is to handle and analyse the huge amount of data. The second challenge is to assess the uncertainties in building simulations as a consequence of uncertainties in the future climate data. In this paper two statistical methods, which have been adopted from climatology, are introduced. Applications of the methods are illustrated by looking into two uncertainty factors of the future climate; operating RCMs at different spatial resolutions and with boundary data from different GCMs. The Ferro hypothesis is introduced as a nonparametric method for comparing data at different spatial resolutions. The method is quick and subtle enough to make the comparison. The parametric method of decomposition of variabilities is described and its application in data assessment is shown by considering RCM data forced by different GCMs. The method enables to study data and its variations in different time scales. It provides a useful summary about data and its variations which makes the comparison between several data sets easier.

Nyckelord: Climate change, Building simulation, Statistical methods, Climate, change impact, weather, uncertainties, models

Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2012-05-24. Senast ändrad 2017-10-03.
CPL Pubid: 157974


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för bygg- och miljöteknik, Byggnadsteknologi (2005-2017)


Building Futures
Hållbar utveckling
Tillämpad matematik

Chalmers infrastruktur

Relaterade publikationer

Denna publikation ingår i:

Hygrothermal Simulations of Buildings Concerning Uncertainties of the Future Climate